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a b s t r a c t

In this paper, a mathematical model of the SCR catalytic converter is replaced with the neural network
model to accelerate the optimization process. The Euro steady state calibration test data set is used
to simulate the inlet properties of the SCR catalytic converter. For each chosen condition, a separate
neural network is developed. In order to generate sufficient data to form a neural network for each
condition, the original mathematical model was run several times at the temperature and inlet NO
eywords:
enetic algorithm
eural network
Ox emission control
ptimization
CR catalytic converter

x

concentration of each condition with a range of different ammonia concentrations. Subsequently, using
MATLAB® software, the neural network model is trained and tested for each condition. Ammonia dosing
optimization is performed using multi objective genetic algorithm module of MATLAB®. The optimization
objectives are NOx reduction percentage and the outlet ammonia concentration of the SCR catalytic
converter. It is convenient that the NOx is reduced as much as possible while ammonia concentration

does not exceed 25 ppm.

. Introduction

As diesel engines are becoming more popular for applications in
ransportation (heavy-duty and passenger cars), emission topic is
lso becoming a more challenging issue. Consequently, the global
mission standards have become much more stringent in the past
ew years [1] and because of the lean environment in diesel engine,
heir focus is mainly on NOx (NO and NO2) and exhaust gas PM (par-
iculate matters). One of the major chemicals in the diesel exhaust
as is nitrogen oxide (NO) which is proved to be harmful for human
ealth. It contains almost 90% of the diesel engine overall NOx emis-
ion. Comparing the EU regulation of the standards for pollutant
missions for heavy-duty diesel commercial vehicles in 2008 (Euro
standards) and forthcoming 2013 regulations (Euro 6 standards),
Ox emission must be reduced up to 80% [2]. One way to decrease

he engine exhaust NOx is to circulate a portion of the exhaust gas
ack to the cylinders. This method is known as Exhaust Gas Recircu-
ation (EGR). Applying this method results in some of the oxygen in
re-combustion mixture to be replaced by the exhaust gas. Conse-
uently, NOx will be reduced because the formation of NOx strongly
epends on nitrogen and oxygen mixing in high temperature. How-
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ever, the result of this method is not satisfactory for the current
and future requirements of the emission regulations [3]. Therefore,
the application of an efficient after-treatment technology seems
inevitable.

An efficient NOx reduction method in diesel exhaust is the selec-
tive catalytic reduction (SCR) with ammonia [4]. This technology
was first used in stationary applications and has also become very
popular for both light-duty and heavy-duty vehicles over the last
decade [5–7]. Urea SCR is undoubtedly one of the most effective
methods of reducing NOx because of its high selectivity and reac-
tivity with NOx in the presence of excess oxygen and is also very
economical.

Among numerous models of SCR catalytic converter, a mathe-
matical model was developed to study the behavior of SCR catalytic
converter.

The objectives of this paper are (1) develop a neural network
model of the SCR catalytic converter to replace the developed
mathematical model and (2) optimize the performance of the SCR
catalytic converter by determining the necessary amount of ammo-
nia at each inlet NOx concentration.
2. Mathematical model of the SCR catalyst

2.1. SCR reactions

SCR process using ammonia consists of 3 major stages:

dx.doi.org/10.1016/j.cej.2010.09.055
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http://www.elsevier.com/locate/cej
mailto:ehsan_majd@sina.kntu.ac.ir
mailto:shamekhi@kntu.ac.ir
dx.doi.org/10.1016/j.cej.2010.09.055


E.M. Faghihi, A.H. Shamekhi / Chemical Engi

Nomenclature

C concentration (mol/m3)
Cp specific heat capacity (J/kg K)
Cp,c specific heat capacity of the monolith material
h heat transfer coefficient between gas and solid

phase (W/m2 K)
ho heat transfer coefficient to the environment

(W/m2 K)
km mass transfer coefficient (m/s)
L catalyst length (m)
R reaction rate (mol/m2 s)
Sa catalytic surface area per unit washcoat volume

(m−1)
Sv monolith internal surface area per unit monolith

volume (m−1)
Sv,o monolith external surface area per unit monolith

volume (m−1)
Tg exhaust gas temperature (K)
Ts catalyst surface temperature (K)
Tamb ambient temperature (K)
u exhaust gas velocity (m/s)
�H reaction enthalpy (J/mol)

Greek letters
˝NH3 catalyst ammonia adsorption capacity (mol/m3)
ε void fraction of the monolith reactor
�NH3 ammonia surface coverage
�s thermal conductivity of catalyst
�g exhaust gas density (kg/m3)
�c monolith density (kg/m3)

Subscripts
ads adsorption
des desorption
g gas phase
i species index
j reaction number

1

2
3

a

m

N

4

4

4

4

4

N

R
N

ox oxidation
s solid phase

. Ammonia which is produced by the hydrolysis of urea is
adsorbed on the catalyst.

. NOx reduction takes place using the adsorbed ammonia.

. The remaining ammonia is desorbed from the catalyst to the gas
flow.

There are also some side-reactions including the oxidation of
mmonia at high temperatures.

The following reactions are considered in the mathematical
odel:

H3 → NH∗
3 (1)

NH∗
3 + 4NO + O2 → 4N2 + 6H2O (2)

NH∗
3 + 2NO + 2NO2 → 4N2 + 6H2O (3)

NH∗
3 + 3NO2 → 3.5N2 + 6H2O (4)

NH3 + 3O2 → 2N2 + 6H2O (5)
NH3 + 5O2 → 4NO + 6H2O (6)

H∗
3 → NH3 (7)

eaction (1) is the adsorption of ammonia. Reactions (2)–(4) are
Ox reduction reactions. The oxidation of ammonia is described by
neering Journal 165 (2010) 508–516 509

reactions (5) and (6). Finally, reaction (7) is referred to as desorption
of ammonia from the surface of the catalyst.

2.2. Modeling

A one-dimensional model was used in this paper. As discussed
in previous literature [8,9], the basic governing equations including
Navier–Stokes equations and conservation of energy and species
were used to simulate the behavior of SCR. The following assump-
tions were taken into account in modeling:

• A single SCR honeycomb channel can represent the overall behav-
ior of the SCR catalyst.

• Laminar flow (considering each channel’s width and gas velocity).
• One-dimensional flow (axial).
• No pressure drop.
• Ideal gas conditions.
• Surface reactions with first order kinetics.
• No species diffusion between gas phase and solid phase (catalyst

surface).
• Axial heat conductivity in the solid phase.

Using the definitions of the terms specified in the nomenclature
section, energy balances for gas phase and solid phases are

ε�gCp,g
∂

∂t
Tg = −ε�gCp,gu

∂

∂x
Tg − hSv(Tg − Ts) (8)

(1 − ε)�cCp,c
∂

∂t
Ts = (1 − ε)�s

∂2

∂x2
Ts + hSv(Tg − Ts)

− hoSv,o(Ts − Tamb) +
∑

j

�HjRjSa (9)

Mass balances for gas phase and solid phase are:

ε
∂

∂t
Cg,i = −εu

∂

∂x
Cg,i − km,i · Sv · (Cg,i − Cs,i) (10)

(1 − ε)
∂

∂t
Cs,i = km,i · Sv · (Cg,i − Cs,i) ±

∑
j

Ri,jSa (11)

where ε denotes the volume fraction of the catalyst which is not
filled with exhaust gas, h is the heat transfer coefficient between gas
and solid phase, ho is the heat transfer coefficient between monolith
wall and the environment, �Hj is the enthalpy of the jth reaction
inside the catalytic converter, Rj expresses the rate of the jth reac-
tion inside the catalytic converter, C is species concentration, km,i is
the mass transfer coefficient of the ith species and finally, Ri,j rep-
resents the rate of the jth reaction inside the catalytic converter
affecting the ith species. The reaction rates are those employed by
Chi and DaCosta [13].

All the terms used in Eqs. (8)–(11) are defined to clarify what
phenomena they represent:

Energy balance:

⎧
∂

Gas phase :

⎪⎪⎪⎨
⎪⎪⎪⎩

ε�gCp,g
∂t

Tg → accumulation

ε�gCp,gu
∂

∂x
Tg → convection

hSv(Tg − Ts) → gas–solid heat transfer
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Fig. 1. A comparison between NOx conversion efficiency calculated by t

olid phase :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − ε)�cCp,c
∂

∂t
Ts → accumulation

(1 − ε)�s
∂2

∂x2
Ts → axial heat conduction

hSv(Tg − Ts) − hoSv,o(Ts − Tamb) → gas–solid heat transfer∑
j

�HjRjSa → released heat from chemical reactions

Mass balance:

as phase :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
∂

∂t
Cg,i → accumulation

εu
∂

∂x
Cg,i → convection

km,i · Sv · (Cg,i − Cs,i) → external mass transfer

olid phase :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − ε)
∂

∂t
Cs,i → accumulation

km,i · Sv · (Cg,i − Cs,i) → external mass transfer∑
j

Ri,jSa → catalytic reactions

here convection indicates the change in temperature (in energy
alance) and concentration (in mass balance) due to the flow
hrough the channel.

Finally, ammonia surface coverage (0 ≤ �NH3 ≤ 1) is obtained
rom the following equation:

NH3 · ∂

∂t
�NH3 = Rads − Rdes − Sa(RSCR + Rox) (12)

ads, Rdes, RSCR and Rox correspond to the rate of ammonia adsorp-
ion on the catalyst surface, desorption of ammonia from the
atalyst surface, reduction of NOx and oxidation of ammonia
espectively.

Initial and boundary conditions for the partial differential equa-
ions are as follows:
= 0 :

⎧⎪⎨
⎪⎩

Tg(x) = Ts(x) = Texhaust

Cg,i(x) = Cs,i(x) = Cj,0

�(x) = �0
eloped mathematical model and those of Winkler’s and Chae’s models.

x = 0(inlet) :

⎧⎪⎪⎨
⎪⎪⎩

Tg

∣∣= Texhaust

∂

∂x
Ts = 0 → Ts |= Ts |

Cg,i | = Cj,0

x = L(outlet) :
∂

∂x
Ts = 0 → Ts |= Ts |

where m is the index of the grid points along the catalyst axis.
In other words, n points (including inlet and outlet) are consid-
ered along the catalyst axis which divides it to n − 1 equal parts.
Therefore, m = 1 and m = n are corresponding to x = 0 (inlet) and x = L
(outlet), respectively.

A computer code was developed in MATLAB® software environ-
ment to solve the system of 9 coupled partial differential equations;
two equations for gas and catalyst temperatures, six equations for
species concentrations in gas and solid phases (the species are NO,
NO2 and NH3) and one equation for ammonia surface coverage
using method of lines [10,11].

To confirm the validity of the developed model, the results of this
model is compared to two other valid models presented by Winkler
et al. [9] and Chae et al. [12] with the same inlet conditions in Fig. 1.

The comparison in Fig. 1 indicates that simulation results are
almost in good agreement with two other valid models. Therefore,
the model can be used to simulate the behavior of SCR catalytic
converter.

3. Neural network model

Although the discussed mathematical model was developed to
be as simple as possible, the run-time of the model is still a great
concern. For example, it takes a 2.8 MHz CORETM i7 cpu computer
almost 4 min to solve the 400 by 100 grid system of governing par-
tial differential equations in a single run. Therefore, the need to
develop a neural network seems to be justified which leads to sav-
ing a great amount of time to obtain the necessary data at different
initial conditions.

Table 1 shows the engine operating conditions used as the ini-

tial conditions to run the mathematical model [13]. The inputs and
results (targets) are then used to develop the neural networks:

In Table 1, load refers to the injected fuel mass in an operating
condition of the diesel engine per maximum injected fuel mass.
Another parameter in this table is the space velocity which is one
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Table 1
Engine operating conditions.

Mode Engine speed (rpm) Load (%) Temperature (◦C) Space velocity (1/h) Inlet NOx conc. (ppm)

1 600 0 120 2081 150
2 1058 25 303 4444 749
3 1058 50 425 5907 1146
4 1058 75 493 7609 1294
5 1058 100 515 9532 1250
6 1321 25 290 6292 596
7 1321 50 368 8462 1045
8 1321 75 416 10880 1176
9 1321 100 470 13048 1215

0
4
6
9

o
o

•

n
r
p
i
t
w
o
r
m

•

o
N
F

i
n
m
t

10 1584 25 27
11 1584 50 33
12 1584 75 37
13 1584 100 43

f the inputs of the mathematical model. It stands for the volume
f gas feed per hour per volume of the catalyst.

To develop a neural network, the following steps were taken:

Assembling the training data (inputs and targets) derived from
the mathematical model

The test modes in Table 1 provide the inputs for the neural
etwork. As indicated in the table, each inlet NOx concentration cor-
esponds to a unique exhaust gas temperature. Therefore, the only
arameter that can be used as a variable to control the system is the

nitial concentration of ammonia. Keeping the SCR inlet tempera-
ure and NOx concentration constant, various amounts of ammonia
ere considered for each mode of the table. For each amount

f ammonia the mathematical model was run and the obtained
esults were stored to be used to develop a neural network for each
ode.

Creating the network object

Considering exhaust gas temperature and inlet concentrations
f NO and ammonia as the inputs and NOx reduction efficiency and
H3 slip as the output, a feed-forward neural network was created.
ig. 2 shows a schematic of this network.
As shown in Fig. 2, the network consists of an input layer, one or –
f necessary – more hidden layers with various number of sigmoid
eurons followed by an output layer of linear neurons. Applying
ultiple layers of neurons with nonlinear transfer functions makes

he network capable of learning nonlinear and linear relationships

Fig. 2. A schematic of the neural network structure.
7871 497
10493 778
13166 1003
14800 1133

between input and output vectors. In Fig. 3, a schematic of a two-
layer network is shown:

In Fig. 3, W and b correspond to the weight and bias of the neu-
ron. The transfer function for hidden layer is “tansig” and the one
for output layer is “purelin” [14]. The same transfer functions were
used in present paper’s neural networks. Fig. 4 shows these transfer
functions.

• Training the network

After creating the network, the training process begins. To train a
network, a set of network inputs and target outputs is needed. A key
parameter of the created feed-forward network is the performance
function which must be minimized during training by adjusting
the weights and biases of the network iteratively. The performance
function we deal with in this paper is Mean Square Error (MSE)
which is the average squared error between the network outputs
and the target outputs.

MSE = 1
N

P∑
p=1

N∑
i=1

(Yp, ireal − Yp, ipredicted)2 (13)

where i is the index in the output layer, p is the number of inputs,
Ypredicted is the network outputs and Yreal is the mathematical model
outputs (target outputs).

The numerical optimization technique used for training the neu-
ral network is Levenberg–Marquardt backpropagation which is
referred to as “trainlm” in MATLAB® neural network environment
[14]. This training algorithm updates the weights and biases of the
network in the negative gradient direction which leads to a fast
decrease in performance function:
xk+1 = xk − ˛kgk (14)

Eq. (14) shows a single iteration of this algorithm, xk is the vector
of current weights and biases, gk is the current gradient and ˛k is
the learning rate.

Fig. 3. A two-layer neural network [14].
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Fig. 4. Transfer function

. Optimization

The purpose of optimizing a function is to maximize or minimize
ome of its variables through finding a set of design parameters
hat the mentioned variables are dependent on. There are vari-
us optimization techniques whose task is to find a set of optimal
esign parameters which minimize or maximize certain variables
f a function.

In this paper, the objective of optimization is to find the optimal
nlet ammonia concentration (as the design parameter) to maxi-

ize the NOx conversion efficiency of SCR catalyst and minimize
he ammonia slip simultaneously. Therefore, the multi objective
enetic algorithm was applied due to its simplicity of use and
obustness.

.1. Multi-objective optimization problems (MOPs)

MOPs can be defined as below [15,16]:

min �f (�x) =
{

f1(�x), f2(�x), . . . , fk(�x)
}T

x ∈ X =
{�x ∈ Rn

∣∣gj(�x) ≤ 0 (j = 1, . . . , m)
}

here �x is the vector of design variables that maximize or minimize
objective functions within m constrains. The objective of MOP is

o find �x.
�f and �g are the functions of objectives and constrains:

fi(�x) = fi(x1, x2, . . . , xn), i = 1, . . . , k

gj(�x) = gj(x1, x2, . . . , xn), j = 1, . . . , m

In many MOPs, the considered objectives are in conflict with
ach other. Therefore, it is impossible to achieve a solution that

ptimizes each objective function concurrently. The answer to
uch problems is a set of solutions, called Pareto optimal. But,
efore defining this term, the concept of dominant must be intro-
uced. Assume that �x1 and �x2 are vectors in n-dimensional space
�x1, �x2 ∈ Rn) and f is a function. �x1 dominates �x2 if the following
in the neural network.

conditions satisfy:⎧⎪⎨
⎪⎩

fi(�x1) ≤ fi(�x2) (∀i = 1, . . . , k)

and

fi(�x1) ≺ fi(�x2) (∃i = 1, . . . , k)

A solution which is not dominated by any other solution in the
solution space is known as Pareto optimal. The main characteris-
tic of the Pareto optimal solution is that it cannot be improved
with respect to an objective unless deteriorating at least one other
objective. A set of all these non-dominated solutions is called Pareto
optimal set and the corresponding objective function values in the
objective space are the Pareto front. Finding the Pareto front, which
consists of Pareto optimum solutions, is the major goal in MOPs
[15–17].

4.2. Genetic algorithm (GA)

The genetic algorithm is based on natural selection which is the
concept of biological evolution. In nature, weak species become
extinct in their environment due to natural selection. The reason
is that strong species are more likely to pass their genes to future
generations through reproduction. Consequently, the species with
the correct combination in their gens become dominant in their
population after a number of generations [17]. This algorithm is
suited to solve multi-objective problems because:

• The ability to search various regions of the solution space enables
it to find diverse solutions even in non-convex, discontinuous and
multi-modal solution spaces.

• The user does not have to prioritize, scale or weight objectives.

There are several GAs for MOPs and they usually have the same
working pattern including the following steps [15,17]:
• Step 1 (Initialization): The individuals (search points) are initial-
ized.

• Step 2 (Evaluation): The fitness value of each individual is eval-
uated by Pareto ranking. For each solution, Pareto ranking is the
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Table 2
Genetic algorithm optimization parameters.

Parameter Definition Value/type

Number of generations Maximum number of iterations 400
ss

roduce
s with
lative

•

•

•

t
o

Population size The number of individuals in the optimization proce
Crossover fraction The fraction of the next generation that crossover p
Mutation function The assigned function randomly generates direction
Stopping criteria Function tolerance: the algorithm stops if the cumu

number of solutions dominant to the focused solution +1. The
fitness value is reciprocal number of the Pareto ranking.
Step 3 (Selection): According to the fitness values, some of the
individuals are selected.
Step 4 (Reproduction): If the terminal condition is not satis-
fied, new search points must be generated. The operators that
GA uses to generate new solutions are crossover and mutation.
Crossover results in the convergence of the population by mak-
ing the individuals alike. On the other hand, mutation applies
random changes to the individuals to avoid the search from local
optima. Usually, a combination of these operators is applied.

Step 5: The process repeats from step 2.

As the described process goes on and the number of genera-
ions increases, the population evolves and the optimal solution is
btained.

Fig. 5. Verification of the neural network response (N

Fig. 6. Verification of the neural network respo
60
s 0.8
respect to the last successful or unsuccessful generation Adaptive feasible

change in fitness function value is less than this value. 0.0001

In multi objective genetic algorithm optimization, the con-
cept discussed above is used to minimize the objective vectors.
Since one of the objectives in the SCR catalytic converter (NOx

conversion efficiency) is to be maximized, all the members of
this objective vector were inversed in order to be used in the
algorithm.

In this paper, fast non-dominated sorting genetic algorithm
(NSGA-II) [18] was used. To use this algorithm in MATLAB®, some
parameters must be introduced to the software including the
number of variables, the objective function and also suitable con-
strains. The created neural network was used as the objective

function which returns separate objective vectors for NOx con-
version efficiency and ammonia slip. Ammonia inlet concentration
was considered to be the only variable of the system. The system
variable constrains were defined in the form of lower and upper
bounds.

Ox conversion efficiency) to random test data.

nse (NH3 concentration) to random data.
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Fig. 7. Comparison of the mathematical model results

The parameters used in the genetic algorithm optimization are
resented in Table 2:

. Results and discussion

.1. Neural network simulation results

To observe how the whole process functions, we shall consider
ode 3 in Table 1 as an example. Twenty-five runs were performed

n the mathematical model of the SCR, each one with a different
nlet ammonia concentration. A set of 18 input/output data was
sed to train a neural network and the remaining data was used to
est it. A computer code was developed to extract totally random
est data in order to verify how well the network has been trained.

Figs. 5 and 6 show the neural network test results for NOx con-
ersion efficiency and output concentration of ammonia as the
argets of the network, respectively.

According to Figs. 5 and 6, the created network was trained prop-
rly and it is able to give reasonable answers when it is fed with the
nputs that it has never seen before. Therefore, the mathematical
odel can be replaced with the neural network in this particular
ode.
In Figs. 7 and 8, the responses of the mathematical model to Euro

est set mode 3 conditions were compared to those of the neural
etwork.

Fig. 8. Comparison of the mathematical model results and the
e neural network results (NOx conversion efficiency).

5.2. Optimizations results

The optimization was run and terminated after 212 iterations
for test mode 3. Fig. 9 shows the Pareto front plot of the objectives.

As shown in Fig. 9, the optimal result is highlighted and has the
coordinates of (88, 24). This point corresponds to inlet ammonia
concentration of 674 ppm. In other words, for mode 3, with the
inlet NOx concentration of 1146 ppm, the best amount of ammonia
which results in the optimal performance of SCR catalytic converter
(88% reduction of NO and 24 ppm ammonia slip) is 674 ppm.

Obviously, the demand to increase NOx conversion efficiency
results in ammonia slip exceeding the maximum allowed value of
25 ppm and acting as a pollutant – known as unregulated emission
– itself. On the other hand, moving toward lower ammonia slip
decreases the ability of the SCR catalyst to reduce NOx. In other
words, improving the solution with respect to one objective leads
to worsening the other objective. As indicated before, this is the
main concept of the Pareto optimal solution.

In Fig. 10, the optimization result of test mode 5 is shown.
In this mode, the optimal point has the coordinates of (57, 21)
that occurs at inlet ammonia concentration of 876 ppm. As demon-
strated in Fig. 10, the trend is similar to that of mode 3, but the
NOx conversion efficiency has decreased distinctly. This decrease
is caused by the 90◦ initial temperature difference between mode

neural network result (ammonia output concentration).
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Fig. 9. Optimization result (Parteo front) for mode 3.

Fig. 10. Optimization result (Parteo front) for mode 5.

Table 3
Optimization results for the engine speed of 1058 rpm.

Mode Temperature (◦C) Inlet NOx conc. (ppm) Optimal NH3 (ppm) NOx conversion (%) NH3 slip (ppm)

5
6
9
8

3
a
e
T
c

s
T

e
m
t
s
b
t
o
k

2 303 749
3 425 1146
4 493 1294
5 515 1250

and mode 5. As the temperature inside the SCR catalyst exceeds
certain value (around 450 ◦C), ammonia oxidation takes place

specially through reaction (5). The product of this reaction is NO.
herefore, increasing the temperature leads to a decrease in NOx

onversion efficiency and also ammonia slip.
Finally, the optimization results for modes 2–5 (engine

peed = 1058 rpm) of Table 1 are summarized and presented in
able 3:

The applied genetic algorithm (NSGA-II) is one of the most
fficient, fast convergent and well tested algorithms suitable for
ulti-objective problems. However, NSGA-II uses a crowding dis-

ance method to determine the population density around a

olution in order to obtain a uniform spread of solutions along the
est-known Pareto front [17]. The main drawback of this method is
hat crowding distance is capable of working in the objective space
nly. Therefore, NSGA-II might be surpassed by another method
nown as Strength Pareto Evolutionary Algorithm (SPEA-2) [19].
86 86 6.3
74 88 24
01 70.6 24.6
76 57 21

6. Conclusion

With the intention of saving time and computational efforts,
the conventional mathematical model of SCR catalytic converter
was replaced with a neural network model. Then, it was used as an
objective function to optimize the performance of the SCR catalytic
converter using multi objective genetic algorithm. The purpose of
optimization was to find the best amount of inlet ammonia con-
centration for each inlet NOx concentration in order to maximize
the NOx conversion efficiency and to keep the ammonia slip under
a certain amount simultaneously.

As predicted, NOx conversion efficiency increased with increas-

ing inlet ammonia concentration and it resulted in high ammonia
slip which is not favored at all. Thus, in order to accomplish
both objectives, the optimal point which had the highest possible
NOx conversion efficiency while keeping the ammonia slip below
25 ppm was chosen at each mode.
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The main achievements of this paper are

By substituting the SCR catalytic converter model with neural
network model, the run time was decreased from almost 4 min
to almost real-time speed.
Finding the optimized inlet ammonia concentration through
multi objective genetic algorithm resulted in the highest possible
NOx efficiency and low ammonia slip.
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